Notwithstanding the growing interest in cross-lingual techniques for Natural Language Processing, there has been a surprisingly small number of efforts aimed at the development of easy-to-use tools for cross-lingual Semantic Role Labeling. In this paper, we fill this gap and present InVeRo-XL, an off-the-shelf state-of-the-art system capable of annotating text with predicate sense and semantic role labels from 7 predicate-argument structure inventories in more than 40 languages. We hope that our system – with its easy-to-use RESTful API and Web interface – will become a valuable tool for the research community, encouraging the integration of sentence-level semantics into cross-lingual downstream tasks. InVeRo-XL is available online at http://nlp.uniroma1.it/invero.

InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles / Conia, Simone; Orlando, Riccardo; Brignone, Fabrizio; Cecconi, Francesco; Navigli, Roberto. - (2021), pp. 319-328. (Intervento presentato al convegno Empirical Methods in Natural Language Processing tenutosi a Punta Cana; Dominican Republic) [10.18653/v1/2021.emnlp-demo.36].

InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles

Conia, Simone
Primo
;
Orlando, Riccardo
Secondo
;
Navigli, Roberto
Ultimo
2021

Abstract

Notwithstanding the growing interest in cross-lingual techniques for Natural Language Processing, there has been a surprisingly small number of efforts aimed at the development of easy-to-use tools for cross-lingual Semantic Role Labeling. In this paper, we fill this gap and present InVeRo-XL, an off-the-shelf state-of-the-art system capable of annotating text with predicate sense and semantic role labels from 7 predicate-argument structure inventories in more than 40 languages. We hope that our system – with its easy-to-use RESTful API and Web interface – will become a valuable tool for the research community, encouraging the integration of sentence-level semantics into cross-lingual downstream tasks. InVeRo-XL is available online at http://nlp.uniroma1.it/invero.
2021
Empirical Methods in Natural Language Processing
natural language processing; artificial intelligence; deep learning; semantic role labeling; multilinguality; cross-linguality
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
InVeRo-XL: Making Cross-Lingual Semantic Role Labeling Accessible with Intelligible Verbs and Roles / Conia, Simone; Orlando, Riccardo; Brignone, Fabrizio; Cecconi, Francesco; Navigli, Roberto. - (2021), pp. 319-328. (Intervento presentato al convegno Empirical Methods in Natural Language Processing tenutosi a Punta Cana; Dominican Republic) [10.18653/v1/2021.emnlp-demo.36].
File allegati a questo prodotto
File Dimensione Formato  
Conia_InVeRo-XL_2021.pdf

accesso aperto

Note: DOI: 10.18653/v1/2021.emnlp-demo.36
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 804.37 kB
Formato Adobe PDF
804.37 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1604131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 2
social impact